Ka8 and Ka8 B/C
"Rhönsegler"
Operating Instructions
<table>
<thead>
<tr>
<th>Item</th>
<th>Section & Page Affected</th>
<th>Page</th>
<th>Date</th>
<th>Ref. / Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TN-No. 19</td>
<td>10a</td>
<td>01.11.75</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AD-Note 72-7/3 TN-No. 23</td>
<td>Annex</td>
<td>13.12.89</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Leermassen-Erweiterung</td>
<td>20</td>
<td>13.06.96</td>
<td>JUW</td>
</tr>
<tr>
<td>4</td>
<td>AD-Note 96-005 TN-No. 24</td>
<td>Annex</td>
<td>17.06.97</td>
<td>M.Münch</td>
</tr>
<tr>
<td>5</td>
<td>TN-No. 26</td>
<td>5</td>
<td>02.03.06</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>TN-No. 27/2005</td>
<td>4a</td>
<td>02.03.06</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>TN-No. 28</td>
<td>Annex</td>
<td>25.05.10</td>
<td></td>
</tr>
</tbody>
</table>
Operating Instructions for the Sailplane Schleicher KS and KS P

A) Main data
B) Minimum equipment
C) Wing-and tail setting
D) Assembly and disassembly
E) Flying operations
F) Maintenance
G) Locations of C. G.

Attachments:
1. Three-sides view
2. Weight and balance
3. Elevator unit assembly
Weights
Empty weight: 420 lbs.
Max. useful load: 265 lbs.
Gross weight: 689 lbs.
Max. weight of non-supporting structure: 440 lbs.

Approved for:
Shockcord start: yes
Auto-winchi tow: up to 60 mph
Aero-tow: up to 80 mph
Glide, gusty conditions: up to 80 mph
Calm conditions: up to 120 mph
Acrobatics: none

Suites for:
Primary training: none
Training of emergencies: yes

Stress classification:
Class II, according to the German Glider Stress Specification (BVS).
III. SAFETY EQUIPMENT

Four parts safety belt, airspeed indicator with a range up to 125 mph, altimeter, back-pad with solid filling about 4 in. thick (compressed) if no parachute will be used, trimming plan, data-plate.

CL. WING-AND-AILERON SETTING
(See three-sides view)

The angles of setting and wing wash-out as well as the deflections of the control surfaces are to be gathered from the three-sides view.
Pay attention to the tolerances if repair is necessary.

The position of the ailerons is influenced by the elevator control on account of a special kinematic of the control system. The ailerons have a normal setting if the stick has a normal or pushed position.
A pulled stick means lifting the ailerons somewhat.

The deflections of control surfaces and the extension of dive brakes are limited:

Rudder: The rudder is non-adjustable stopped in the rear on the lower rudder hinge fitting.

Ailerons: The control stick is stopped by hardwood blocks on the seat supporting tubes.
Elevator

To the rear: Non-adjustable stop. The control stick strikes against the seat edge.

To the front: Adjustable stopper on the lower side of the elevator push-pull tube striking against the control stick.

Dive brakes

To the rear: Adjustable stopper on the horizontal push rod striking against a frame tube.

To the front: Non-adjustable stop. The shift lever strikes against a stopper on the frame. The angle range of the lever will be regulated by this stop device. The lever movement to the front may not exceed the top center point about 0.4 in. measured from the ball bearing of the forked vertical push rod.
Flugbetrieb mit offener Haube

- Bei der Inbetriebnahme des Segelflugzeuges mit offener Haube, sind die Abschottplatten am Holm- bzw. Sitzsattel anzuklingen.
- Die geschlossene Haube ist gegen die offene Haube auszutauschen.
- Der Haubennotabwurf der offenen Haube erfolgt wie bei der geschlossenen Haube (weiße und rote Knöpfe).
- Schutzbrille tragen!
- Beachte: höhere Sinkwerte!
2) Assembly and disassembly

Assembly

Clean and lubricate bolts and holes.

Connect left wing sideways to the fuselage, put in the nose bolt.
Caution! Do not tilt the fuselage.

Do the very same with the right wing.

Connect the main spar fittings with bevelled bolts (put in the lower bolt first). Tighten the bolts. Moving the wings a little will facilitate this procedure. Safety the main bolts with cowling safety pins.

Connect attachment fittings of ailerons and dive brakes. Safety with cowling pins.

Set up the elevator unit by suspending the rear eyebolts on the fuselage pins and tighten the front bolt. Safety with cowling pin. Pay attention to the correct position of the control lever (see the sketch of elevator unit assembly).

Connect the Flettner push rod to the elevator control lever by means of a split pin.

Check clearance and correct operation of controls, dive brakes, and automatic release of the tow coupling.

Make general inspection.

Check pressure of the landing wheel.
(35 lb/sq. in.)

Attach fairings.

Disassembly is essentially the reverse of assembly. Lubricate all attachments to prevent corrosion. It is advisable to tie the Flettner push rod.
8. Flying operations

Trimming

The sailplane may be flown with pilot weights of 132 lbs. up to 220 lbs. With weights of this range trimming is not required. Pilots of less weight have to use lead-cushions.

A spring balance on the control stick adjusts the desired manual force of elevator control. The Flettner balance acts equivalently: movement to the front means nose-heaviness, movement to the rear means tail-heaviness.

Adjustment of rudder pedal control

Draw back the pedals with heels and lock the side click-stop devices of the control cables into the desired position. This procedure will be possible even during the flight.

Auto-winch tow

Preset breaking point No. II
Max. tow speed: 60 mph.
Notice: During winch tow pulling the stick means increase of speed. After take off push the stick a little forward.

Best climbing attitude will be given with control stick in normal position.
Do winch high launching only with C.G. coupling.
Trip by weight
Fixing the 17 lbs standard trim weight at the footboard will compensate for 26 lbs pilot weight.
With very light pilots there is ballast necessary. It should be noted that this ballast is to be fixed to prevent blocking of the controls.

It is recommended to use a lead cushion prepared after the sketch below.

The weight of the ballast cushion should be 20 or 30 lbs. This weight is to be considered when using the trim plan.

Heavy canvas.

Adjust size to seat

About 4 times separated.

Fill with lead shot or lead sheet stripes.

Webbing to hook in at the seat corners.

Heavy webbing to fix it on steel tubes or belt triangle.

Approved by VDL- PIL approval and judgement. In original language is considered.

28th June 1963
Trim by weight

Fixing the 17 lbs standard trim weight at the foot board will compensate for 26 lbs pilot weight.
Aero-Tow
Preset breaking point No. 1
(min. 661 lbs. - max. 992 lbs.)
Max. speed: 80 mph.
The nose coupling is normal for aero-tow.
Using the C.G. coupling is permissible if
textile cable is applied, max. length 328 ft.
Full coupling fully through.

NOTICE! Check the attachments of the cockpit
canopy and of the dive brakes always
before taking off!

Free flight
The values specified as follows are design
values. They relate to the equivalent air-
speed (EAS) - (dynamic pressure).
Pay attention to the deviation of the indi-
cated airspeed (IAS) which depends on the
location of the venturi tube.
The diagram Fig. 1 shows the deviation of
IAS versus EAS provided that a normal venturi
tube 3,5 on the nose of fuselage is installed.
(= 0,125)

Stalling speed \(\left(V_{so} \right) \)
(at a gross weight of 595 lbs.) \(- 32 \) mph.
Minimum sinking speed
(horizontal flight) \(- at \ 38 \) mph.
Best gliding angle \(- at \ 47 \) mph.
Landing

Approach with a speed of approx. 44 - 50 mph.
The gliding angle will be controlled widely by
application of dive brakes.
Touch down with dive brakes not fully extended
and do not pull too much trough.
The plane will be slowed down by pushing the
nose down and sliding on skid.

Emergency

The sailplane can be held in a stalling
position with fully pulled stick and necessary
rudder control. Applying harder rudder brings
the plane into a spin. Taking back all con-
trols into normal positions will stop the spin.

when flying with high speeds the speed limits
are to be observed.
As soon as the speed exceeds 80 mph extend
slowly the dive brakes.
Notice: At high speeds the lever force of the
dive brakes acts in the extending direction.

Raindrops, rime, and icing will deteriorate
the wing surface so much as to change the
flight performance.
Therefore be cautious when approaching in
rain, keep sufficient speed in advance.
F) Maintenance

Moisture is the most serious trouble with wooden planes. Even a steel tube fuselage will be kept dry. Take always care that no water seeps into inner wing compartments. If penetration is suspected keep the wing in a dry room and turn it over daily. The sailplane is especially affected on an open trailer. Cover the wing roots in any case that no water will be splashed in. Moisture in the plane also will be caused by sweat water.

Strong sun irrigation affects the finish. The plane shall not be exposed to the sun more than necessary. The care of the surface finish by means of good provisions increases the durability of the finish, improves the surface, and consequently the flight performance. It is not important to get the surface superfinely polished but to remove dust, dirt splash, and similar contaminations.

Sealing up slots by means of adhesive tapes will also be of use for improving the performance. But do not seal the canopy when bailing out shall be possible.

Clean the plexiglas canopy by means of appropriate provisions, or in the case of need by water. Use a soft and clean cloth. Do not rub with a dry and hard one.
Lubrication of bearings:

The ball bearings are sealed as far as possible and they normally do not require lubrication for a long period. The wing root bearings only which are not sufficiently protected are to be cleaned, using gasoline and lubricated.

The grease fittings on the swing bearings and on the swing lever of the fin which is connected to the push-pull tube of elevator control must be lubricated respectively after 25 flying hours.

The attachments of the control surfaces and other hinge bearings are to be disassembled, cleaned, and lubricated when carrying out the annual overhaul.

The C.G. tow coupling on the bottom of the fuselage will be especially exposed to soiling and requires a frequent cleaning and lubrication. If the sailplane will be often flown on stony and sandy fields it is advisable to secure the lower side of the skid by fastening a steel covering of about 0.04 in. thickness.

The tailskid plate must be reinforced if abrasion will be observed. Take off the skid and weld on a 0.008 in. steel plate.

Check currently the safety belts. They must not show tears, damp stains, and rusty spots.

Tire pressure: 35.5 lb./sq.in.

Repairs of the main spar must be done by experts. Repairs of the steel tube fuselage by approved welders. Inform the manufacturer if extensive repair work is necessary and ask his advice.
GLocations of C.G.

The locations of C.G. have an important influence on the flight performance. Observe exactly the admissible limits.

A displacement of the C.G. too far back will cause emergency conditions. Thereby stalling conditions and especially spinning properties (flat spin!) change for the worse.

The sensitivity of the elevator increases.

A location of the C.G. too far back will result in deteriorating the flight performance and flying with max. lift is no longer possible.

Following limits of gross weight C.G. locations are tested:

 a) Foremost location: 9.7 in.
 b) Aftmost location: 15.4 in.

aft of the wing leading edge at the station of rib 1.

Check the locations of the C.G. if additional equipment will be installed or if repair work and a new finish have been done. One may take as a rule that planes get weightier in course of time and thereby tail-heavier.

It is advisable to carry out a new weight and balance determination in connection with the annual overhaul.
Cleaning of Plexiglass-canopy only with Flexipol and Flexikler. If necessary water. Soft cloth (gloves-cloth). In no case rub with hard cloth dry on Plexiglass.

Lubrication of bearings:
The ball-bearing are, so far as possible, normally covered and therefore will need no special maintenance. Only the bearings at the wing-root, where the rigging-connections do not allow an unobjectionable protection, must be cleaned with petrol when fouled, and greased again.

The Grease-Nipples of the pedal-bearings and of the elevator-pushrod-oscillator at the fin are to be greased about every 25 flying hours.

The rudder- and other plain-bearings are to be dismantled, cleaned and greased at the yearly overhauls.

Tyre press 35 psi.
The j.g. hook especially is exposed to dirt and needs often cleaning and oiling.
If the flying takes place on very stony or sandy grounds it is advisable to protect the skid by screwing on a steel plate of 1 mm thickness.

The tail-skid-plate must be renewed by welding on a 2 mm steel plate from time to time. The tail-skid-plate is to be removed for this purpose. Do not anneal the spring.

The pressure-take-openings for the instruments at the fuselage are to be sealed with adhesive tape on transport or longer parking.
During out of use it will be the best to dismount the instruments and store them in a dry room. When mounting connect right.

The safety-belts are to be checked currently for fractures, damp-stain and corrosion.
Repairs: All larger repairs and overhauls must be effected by the manufacturers. In case of need Mr. Schleicher will inform.

G) Centre of Gravity:
Great influences to the flying characteristics has the center of gravity. Therefore, the prescribed limits must be kept and not exceeded. Far aft position is particularly dangerous. The stalling and spinning characteristics will change then very badly. The sensibility of the elevator will increase. Too much front location of c.g. diminish the performance, and the glider cannot be flown at its maximum lift coefficient.
The following ranges of flight position of c.g. are tested:

a) max. forward position:
 7 inches behind leading-edge of wing at rib No. 1

b) max. aft position:
 14 inches behind wing-leading-edge at rib No. 1

Pay attention to c.g. when additional equipment is installed, at repairs and renewing of finish. One can take it as a rule, that gliders become heavier during their life and become too heavy. Therefore it is advisable to have a new weight regulation of the parts and c.g. balance at each yearly overhaul.
Höhenruder-Montage
der Segelflygerzeuge
Ko2b, Ko8, Ko7 und Ko8.

Beim Einführen des Höhensteuerwerkes in die hinteren Augenbohren darf das Höhenruder nicht nach unten hängen. Zudem muss hochgezogen und das Kugellager des Segmenthebels in den U-Führungsbeschlag eingeführt werden!

- Höhenruder hochhalten
- Steuerknüppel ziehen
- U-Führungsbeschlag mit Kugellager in eingesetzt
- Höhenruder - Stützstange verbogen
- Segmenthebel mit Kugellager sitzt nicht im U-Führungsbeschlag

Richtig

Falsch
Subject: Elevator.

Compliance: Prior to the next take-off.

Reason: A glider of the model K7 failed to gain normal flight altitude immediately after tow rope release on which launch. Only the rudder control was functioning, the ailerons did not respond. This failure occurred at medium altitude. The reason for this was a loose wiper at the elevator rib of the elevator control.

Action: 1. Inspect elevator. Check that the joint between rib 1 and the leading edge plywood is not loose, or that the elevator spar respectively is not loose. The elevator control is intact. If the elevator joint is not tight, it must be repaired to ensure roll control in order to be able to control the glider.
2. If you find a defective glued joint, the rib no. 1 has to be removed and re-glued. It is advisable to exchange at the same time also the first sector of the same plywood. To give a better protection from moisture, a fabric strip (about 30 mm wide) must be glued around the edge of the elevator nose and rib 1 (as shown in Fig.1).

3. The above action under points 1. and 2. must be repeated every three years during the annual re-inspection. This copy of the Technical Note must be inserted in the Flight and Operations Manual of the respective glider as an annex and a corresponding entry must be made into the "Amendments to the Manual".

Material:

Rib 1 made from multi-plywood, 15 mm thick, and semi-plywood, 1 mm thick, according to DIN L100/103, class 1/2 or MIL 914B, 6.1013. Drawing as above.

mass and C.G.:

It is not necessary to redetermine the mass and C.G. data.
NOTE:
Actions 1. and 3. can be accomplished by a person who is familiar with such work.
Action 2. must only be accomplished by a technical aviation service station holding an appropriate license; the completion of all actions must be certified by a licensed aviation inspector in the glider logbook and in the inspection certificates.

Puppenhausen, October 4, 1989

ALEXANDER SCHLEICHER
GmbH & Co.

I.A.
L. W. Junctow

The German original of this Technical Note has been approved by the LBA under the date of Oct.17, 1989 (signature: FRISBILL). The translation into English has been done by best knowledge and judgement; in any case of doubt the German original is controlling.
Date of issue:

13 Dec 1989

Amendment to Certificate:

G. E. G. 25, All serial Nos.

1-2-3 Schneider

Reason:

Good glue joints on rip 7 of the elevator

Action:

As accordance with the respective Technical Data

Accomplishment:

Before 23 Nov start

Technical publications of the manufacturer:

Schneider Elevator, Technical Data, October 4, 1989 "Elevator"

Model: 2-1 and 2-2

G. E. G. 25, 2-26, 2-27, 2-28, 2-29, 2-30, 2-31

Accomplishment and log book entry:

Signature of the skilled person.

The accomplishment of this AD must be certified by an authorized inspector in the proper skill category in the logbook.

Note:

ROD Awarsworth directive replaces A0-462 of August 26, 1989.
M. Bei jeder Montage sauber machen u. fegen.
N. Feuchtmichrippel, alle 25 Std fegen.
O. Bei jährl. Überholung auseinandernehmen u. fegen.

Alle übrigen Gelenke u. die Kupplungen bei Bedarf ölen.

Kugellager werden bei Grundüberholungen mit Bernstein auswaschen u. neu fettet.
Bei jeder Montage sauber machen u. feilen.

Federnhebeln alle 25 Std. feilen.

Bei jährlicher Überholung auseinandernnehmen u. feilen.

Alle übrigen Gelenke u. die Hüllungen bei Bedarf. Beizen.

Hubgelenke werden bei jährlicher Überholung mit Dosen ausgewaschen u. neu gefettet.
WEIGHT AND BALANCE

Level the fuselage and wing tips (wing tips without any load).

HORIZONTAL REF. PLANE

CHORD OF WING-root

DETERMINATION OF EMPTY WEIGHT C.G.:

\[\text{W}_{e} = \text{EMPTY WEIGHT} \]
\[\text{W}_{t} = \text{TAIL JIG WEIGHT} \]
\[\text{W}_{c} = \text{L}_{1} - \text{L}_{2} = \text{CENTER OF GRAVITY (AFT OF DATUM)} \]

TRIMMING

With pilot weights of more than 132 lbs, trimming is not required. Pilots of less weight have to use lead-cushions.

APPROVED EMPTY WEIGHT C.G. LOCATIONS:

<table>
<thead>
<tr>
<th>EMPTY WEIGHT C.G.:</th>
<th>307</th>
<th>410</th>
<th>417</th>
<th>463</th>
<th>485</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCHES</td>
<td>23.9</td>
<td>25.7</td>
<td>24.6</td>
<td>23.9</td>
<td>22.7</td>
</tr>
</tbody>
</table>

(AFT OF DATUM (W. LEADING EDGE))

Schleicher K 8
Schleicher K 8 B

Wageblatt

(Siehe auch Arbeitsblatt 05)

-20-

G1 - Leergewicht; empty weight
G2 - Gewicht am Starthaken; weight at bungee launch hook
G3 - Startgewicht; weight at tail skid
R - Schwerpunkt rücklager; center of gravity position

Trimmplan

Als 45 kg Führergewicht kein Trimmgewicht nötig.
Ohne 63 kg Gewicht der Piloten auf Ballast nötig.
Leichte Piloten müssen 3,3 kg Kissen benutzen.
Pilote von 65 bis 90 kg Gewicht hat 6,6 kg Kissen zu nehmen.

G1 - Leergewicht; empty weight
R - Schwerpunktlage; C of Gr position

<table>
<thead>
<tr>
<th></th>
<th>180</th>
<th>190</th>
<th>200</th>
<th>210</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>660</td>
<td>660</td>
<td>670</td>
<td>675</td>
</tr>
<tr>
<td>m²</td>
<td>220</td>
<td>230</td>
<td>250</td>
<td>250</td>
</tr>
</tbody>
</table>

Wasserflügelverstärkung

behind wing leading edge
Subject:
A1) Canopy retaining cord
A2) Rudder pedals
A3) Elevator control linkage
A4) Inspection of the fuselage tube skeleton and the control linkages for corrosion.
B2) Specification of the max-diameter for the wing attachment pins

Serial number identification:
KB, KBB, KBC, Data Sheet no.216, all serial nos. including any licence- or home-built gliders and any variations thereof.

Compliance:
ad A1) Action to be accomplished with each annual C. of A. inspection, but before or on April 30, 1999.
ad B1) Action to be accomplished with the next annual C. of A. inspection, but before or on April 30, 1999, at the latest.
ad B2) As need be.

Reason:
For safety reasons and on requirement by the German CAA (Luftfahrt-bundesamt), a complete inspection of the fuselage tube skeleton and of all control linkages is scheduled and required by the Technical notes.
ad A1) When a canopy retaining cord is used which either does not comply with the Type Certification assuas and/or is wrongly fitted, it may cause the canopy not to detach from the fuselage in case of canopy emergency (reason).
ad A2) In case of extreme overloading the rudder pedals the attach collars of the pedal boards may bend. As a result also the full deflection of the rudder can become re-stricted.
ad A3) The inspections of several aircraft reported that pre-damaged, bent and broken elevator push rods had been found. A serious flight accident happened which was presumably due to a bent elevator push rod which remained undetected for a longer period and then caused the rod to break at the kink point. Where the keel tube has been bent (e.g. in a crash landing) it is possible that also the elevator push rod has been damaged without this being noticed. Also on trans-ports in rough terrain it is possible that the elevator may deflect downwards and hence its mass may break a pre-damaged elevator push rod leading to a break of the rod.
ad A4) As a consequence of penetrated moisture corrosion damages may develop at the rear walls of the tubes of the fuse-lage skeleton and of the control linkages.
ad B2) Play between wing-to-fuselage attachment screws can be removed by nearing the attachment linkages and using oversize pins. If "attachment pins for wing, front" and/or "Hug- in pins for wing attachment, rear" have to be replaced, oversize pins may be used.

PI 1f6
ad A1) Check whether the canopy retaining cord uses a snap hook as weak link or the fuselage leg; Simple-snap hook to spec. DN 5287, hook length: 30 to 35 mm. This snap hook should open at a tensile load of \(\approx 34 \) kg.
Other means of fixing, such as leather strap or nylon cord without weak link are not permissible and must be replaced by the prescribed type of fixing.

ad A2) Checking the rudder pedals:
With the rudder neutral the pedals left and right must be evenly adjusted. Check the pedal boot angle versus the pedal trim reference see drawing L-215-23-0011. The angle must meet the specified dimension.

Engage the pedal adjustment into its borestem position and check but evasion of the rudder.
Where pedals or attachment collars are bent, these can be either repaired or replaced by new ones.
In order to impede the bending of the pedal boots it is optionally recommended to weld an additional strap onto the attachment collar see Fig.A2.

ad A3) Inspect elevator push rods L-215-44-U 01 and L-215-44-U 02 for bending, deformation, or damage. If any of these are found, the push rod must be replaced by a new one. Never try to straighten any bent push rod; even only slightly bent rods must be replaced!

ad A4) Inspect for corrosion:
If there is suspicion of corrosion, the keel tubes or the primary tubes of the fuselage skeleton as well as all control linkage tubes using a control check hole must be inspected internally for corrosion. Tubes may also use drill holes for the purpose of mounting flashings, pockets etc.
and these are particularly endangered.

So the wall thickness must be inspected by suitable procedures. The specification of the wall thickness of the fuselage skeleton tubes is detailed in drawing L-216-11-51, issue Jan.17, 1966, or L-2-9-11-51 with revision entry dated Nov. 24, 1961, applicable as of serial number 1014.

Where in doubt check the wall thickness by brushing (check from the smooth or by a suitable ultrasonics test apparatus for measuring the thickness of the layers, else in case of push rods with thread connectors check the tube inside for corrosion damages using an endoscope.
If the inside tube walls are all right, then the interior of the tubes must be preserved. In any case this must not increase the mass of the push rods noticeably.
When rust is found, tubes must be replaced.

During each annual C of A, inspection checks for rust pitting or rust formation must be included.
ad 8(1) This Technical Note must be inserted into the Flight and Maintenance Manual K 8 as annex to "Attachments" and the insertion must be certified in the Manual.

ad 8(2) For the maximum oversize diameters of the "anchor" flaps for wing, front (AS PIN 080.11.0708) and/or "plug" flaps for wing attachment, rear (AS PIN 080.10.0515) please observe:
the minimal thickness of the fitting around the bore at its thinnest section must still be at least half of the diameter of the part
The bore in the "wing attachment fitting, front" and the "main fitting, rear" must have H7 tolerance (soft steel). If tolerance is exceeded, the fittings must be replaced.

Material & finish:
Any required materials and/for replacement parts may be ordered from Messrs. SCHLEICHER Tel. +49069858990 or -9929, FAX +49069858940 stating the article type and the serial number of the aircraft in question.

For the impregnation of the tubes you may use e.g. the preservative agent "Insektizidmischung ML", PIN 3762, by Messers. VOGELHOTZ or any equivalent product.

Drawing applicable to this TN:
L-216.42-001; L-216.44-0 01; L-216.44-0 02; L-216.51-51, issue 17.01.1988 or

Fig. A2
Reinforcing the attachment collars for pedal board at the pedal assembly. Material: L7734.4
Welding procedure WIG to spec. DIN 1912, welding wire material: L 7734.2
Status:

If the inspection as per actions A2., A3., or A4 reveals any "dam-
ages", a copy of the report of findings must be returned to
Maersa. SCHLEICHER including the serial number of the aircraft in
question, its number of take-offs and total flight hours.

The above actions must be accomplished by a competent person.
The accomplishment of the actions must be certified by a licensed
amongst inspectors in the pilot's inspection documents, in the
Flight and Maintenance Manual, and in the logbook.

Papenhausen, Dec. 4, 1995

ALEXANDER SCHLEICHER

The German original of this Technical Note has been approved by the LBA under the
date of Dec. 7, 1995 (signature: WALTHER). The translation into English has been
done by best knowledge and judgement; in any case of doubt the German original is
controlling.
Ammunitions Directive

In case of any difficulty, reference should be made to the German original issue.

96-005 Schleicher

Date of Issue: January 22, 1996

Affected Aircrafts:
- German Ly69 Certificate No.: 216

Schleicher
- KSB and KZC including any license- and home-built sailplanes
- 5/No.: 41

Subjects:
- (1) Canopy retaining cord: inspection/replacement
- (2) Hinge pedals: inspection/modification
- (3) Elevator control linkage: inspection/replacement
- (4) Inspection of the fuselage tube section and the control linkages for corrosion
- (5) Amendment of the KSB Flight and Operations Manual
- (6) Specification of the maximum diameter for the wing attachment pins

Remarks:
For safety reasons and to meet the requirements laid down in the relevant technical documents, the inspection of the fuselage tube section and all control linkages is scheduled and required by the technical notes.

Actions:
- (1) Check whether the canopy retaining cord uses a snap hook as weak link at the fuselage
- (2) Inspection and adjustment of the rudder pedals. To prevent bending of pedal beams, it is recommended to install the control linkages in the correct position.
- (3) Inspection of elevators push rods for bending, deformation or damage. If necessary, replace by a new set.
- (4) Inspection of fuselage skeleton and control linkage tubes for corrosion. If necessary, replace concerned parts.
- (5) Issues Technical Note into Flight and Maintenance Manual
- (6) Specify diameter for the wing attachment pins. If the tolerance of the bore in the wing attachment fitting is exceeded, the fittings must be replaced.

Compliance:
- Actions (1) to (4) must be performed at each annual inspection, but for the first time at latest on April 30, 1996.
- Action (5) must be performed at the next annual inspection, but not later than April 30, 1996.
- Action (6) Recommended if necessary.
Die Achse ist in einer Büchse geführt. Durch ein Loch (B) in dieser Büchse ist sie festge-enschwert. Diese Verbindung hat nicht mehr bestanden.

Bei einem Gegenlauf war festgestellt, daß die Achse (A) des Hüttenrohrlagers freier dreht, was zu einem gegenläufigen Drehmoment geführt hat. Diese Achse war nicht in eine Büchse gelocht. Es ist daher möglich, daß die Achse nicht richtig montiert wurde. Dieser Fall ist jedoch nicht kritisch und konnte durch eine Anpassung der Achse behoben werden.
Maßnahmen:
Das Höhenruder demontieren, Prüfen, ob die Lagernasen [A] fest sitzen.

Achtung: Dabei sind zusätzlich auch die Wische des Lagertuchs und am Schweißhülsen [C] auf Risse zu prüfen (insbesondere mit der Lese-100er Vergrößerung).

Geräteanleitung ist der Lagerboden zu entfernen.
Diese TM ist als Anhang in das Flieg- und Betriebsbedingung einheftigen und in den Betriebs-
und Pflegehandbüchern einzufügen.

Demontageleitung: Inspektoret [A], Prüfingenieur [E].

Bei Anruf, das diese Sicherheit ist zu beachten, die bewährte [B] für Kabel und Kabelnfolie [C]
[zu beachten]
Auf die Anweisung, die besondere Sicherheit ist zu beachten, die besondere [B] für Kabel und Kabelnfolie [C]
[zu beachten]

Bei Anruf, die besondere Sicherheit ist zu beachten, die besondere [B] für Kabel und Kabelnfolie [C]
[zu beachten]

Material und
Zeichnungen:
Falls Erdettet werden müssen, lauten die Befehlsnummern:
Material und
Zeichnungen:
Falls Erdettet werden müssen, lauten die Befehlsnummern:

Material:
K 7 L-213.54-0.06, Mittleres Höhenruder-Lager
K 8 L-213.54-0.06, Mittleres Höhenruder-Lager

ASG 11 130.33.2135, Mittleres Höhenruder-Lager
ASG 12 130.33.2135, Mittleres Höhenruder-Lager
ASG 11 307.33.0003, Mittleres Höhenruder-Lager

ASG 12 307.33.0003, Mittleres Höhenruder-Lager

In Unbeanstandung müssen die folgenden Angaben nicht genannt werden:

Massen und
Schwingungsberechnungen:
Das Endergebnis ist:

Hinweise:
Es sei noch einmal an die ETA 72 T3 erinnert, die im doppeltsofliegigen Zusammenhang die Übergabe-
zu den Kriterien der Vorschriften, vor allem an die ETA 72 T3, erinnert. Die ETA 72 T3 legt die folgenden

dem Gerätetermin zu geben, die ETA-72 T3 erinnert.

Die ETA-72 T3 legt die folgenden

Entreignisse an die ETA 72 T3 erinnert.

Beseitigung der Übertragung der ETA 72 T3 erinnert.

Die ETA-72 T3 legt die folgenden

Entreignisse an die ETA 72 T3 erinnert.

Beseitigung der Übertragung der ETA 72 T3 erinnert.

Die ETA-72 T3 legt die folgenden

Entreignisse an die ETA 72 T3 erinnert.

Beseitigung der Übertragung der ETA 72 T3 erinnert.

Die ETA-72 T3 legt die folgenden

Entreignisse an die ETA 72 T3 erinnert.